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Abstract

Prompted by a recent demonstration that the structure of a single quark–lepton
generation may be understood via a Dirac-like linearization of the form p2 +x2,
we analyse the corresponding Clifford algebra in some detail. After classifying
all elements of this algebra according to their U(1) ⊗ SU(3) and SU(2)

transformation properties, we identify the element which might be associated
with the concept of lepton mass. This element is then transformed into a
corresponding element for a single coloured quark. It is shown that—although
none of the three thus obtained individual quark mass elements is rotationally
invariant—the rotational invariance of the quark mass term is restored when
the sum over quark colours is performed.

PACS numbers: 02.40.−k, 03.65.−w, 04.60.−m, 11.30.−j

1. Introduction

The present paper develops somewhat further the approach proposed in [1–4]. The ideas and
heuristic arguments which provide a conceptual justification for the whole approach were
originally presented in [4]. They stemmed from (1) dissatisfaction with the way quark mass is
introduced and used in contemporary elementary particle physics, and (2) a wish to introduce
more symmetry between position and momentum1. In [4] it was argued that instead of
identifying the arena of nonrelativistic physics with the observable three-dimensional space,

1 While these two arguments are as valid as ever, one may now say with a hindsight that the particular way in which
symmetry between position and momentum was enforced in [4] suffered from an erroneous use of U(1) ⊗ SU(3)

as a means of effecting the anticipated lepton–quark interchange. Such a use of U(1) ⊗ SU(3) was forced by the
requirement imposed in [4] that the position–momentum Poisson bracket be invariant. It appears now, as found in
[3], that the corresponding invariance of the position–momentum commutation relations has to be somewhat relaxed
and admit arbitrary (+ or −) signs in front of the imaginary unit, independently for each of the three directions of our
macroscopic 3D world. The lepton–quark interchange is then affected by transformations outside of U(1) ⊗ SU(3).
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one should adopt the description given by the nonrelativistic Hamiltonian formalism, in which
momentum and position coordinates are treated as independent variables. In this language,
the relevant arena appears to be that of phase space. As a result, the question of a possible
symmetry between the momentum and position coordinates (advocated long ago by Born [5])
may be then formulated in a more natural way. This redefinition of what constitutes an arena
admits a generalization of the way in which ‘canonical momenta’ and ‘canonical positions’
are identified with physical momenta and physical positions. Thus, it appears that instead of
just one way suggested by the 3D formalism, one can perform such an identification in four
ways (including the old 3D one). Reference [4] also put forward a conjecture concerning
the generalization of the standard concept of mass. It consisted in associating the concept of
mass not only with the physical momentum (as in standard relations between energy, mass
and momentum), but, more generally, with the very four types of ‘canonical momenta’. It
was then further suggested that the additional three ways of assigning the concept of mass are
related to the existence of quarks, and that it is the ensuing lack of rotational invariance which
is connected with both quark unobservability and the conceptual problems related to the way
quark mass is introduced in contemporary physics.

In [1] the above idea was developed further by admitting non-commuting positions and
momenta. Subsequent Dirac-like linearization of the basic phase-space invariant Rz ≡ p2 + x2

has led to the appearance of a corresponding matrix operator R in Clifford algebra2, and to
the proposal of its identification (up to a factor) with the hypercharge operator. Similarly, the
operator Rtot = Rz + R, with the lowest ‘vacuum’ eigenvalue adopted for Rz, was conjectured
to be identical (up to a factor) to the charge operator Q. The resulting set of the eigenvalues
of Q corresponds precisely to the set of quark and lepton charges of a single standard model
(SM) generation. At the same time, the study of the relevant Clifford algebra provided a
raison d’être for the appearance of the symmetry group U(1)⊗ SU(3) combined with SU(2),
a conjectured precursor of the SM gauge group. Furthermore, it was shown [2, 3] that there
is a one-to-one correspondence between the way in which charge eigenvalues emerge in the
proposed scheme and in the Harari–Shupe rishon model [6]. Finally, a phase-space-based
interpretation of the connection between leptons and quarks was proposed, with quarks being
related to leptons via genuine rotations in phase space and weak isospin related to reflections
in phase space [2, 3].

The success of our approach has its origin in the application of the concept of Clifford
algebra to nonrelativistic phase space. Although many authors stressed in various contexts
the importance of Clifford algebras in physics (see e.g. [7, 8]), applications of this concept to
phase space are fairly rare (see [9]). It is therefore appropriate to study the structure of the
Clifford algebra of nonrelativistic phase space in some detail. This is all the more important
because our phase space approach necessarily introduces a fundamental constant of dimension
(momentum/position) which—when the Planck constant is taken into account—should set a
natural mass scale. Thus, the hope is that our Clifford algebra contains not only the generators
of the relevant symmetries and the algebraic counterparts of positions and momenta, but will
also provide us with some ideas concerning the algebraic approach to the concept of mass. With
this in mind, we shall first classify all elements of the Clifford algebra in question according to
their U(1) ⊗ SU(3) and SU(2) properties. Then, we will linearize the nonrelativistic relation
between kinetic energy, mass and momentum and identify those elements of Clifford algebra
which may be associated with the concept of lepton mass. Finally, using the lepton–quark
transformations introduced in [3], we will transform these elements from the lepton to the

2 The superscript σ , used in [1–3] to distinguish between the matrix and phase-space representations, is suppressed
throughout the present paper.
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quark sector. In this way, we obtain three elements of the Clifford algebra, each corresponding
to the mass of an individual (coloured) quark. We will then show that, although each of these
elements, when taken separately, is not invariant under ordinary rotation, the three elements
add up to give a rotationally-invariant total quark mass term.

We treat our Clifford algebra of nonrelativistic phase space as a laboratory and testing
ground. The real world is clearly much more complex than what this algebra suggests. Yet,
it should be pointed out that our scheme treats the ordinary 3D rotation in the only natural
way, i.e. as a pair of identical (same size and sense) rotations in the momentum and position
subspaces of the phase space. Consequently, all our conclusions regarding the behaviour
under ordinary 3D rotations should be valid in general.

2. Basic definitions, hypercharge and isospin

We shall denote the basic elements of the relevant Clifford algebra by Ak and Bl , with
Ak(Bl) associated with nonrelativistic momentum (position), and use the following explicit
representation:

Ak = σk ⊗ σ0 ⊗ σ1,

Bk = σ0 ⊗ σk ⊗ σ2, (1)

B ≡ iA1A2A3B1B2B3 = σ0 ⊗ σ0 ⊗ σ3.

In order to analyse our Clifford algebra in terms of its U(1)⊗SU(3) properties, it is appropriate
to introduce combinations analogous to the standard annihilation and creation operators ak

and a
†
k , i.e.:

Ck = 1√
2
(Bk + iAk), C

†
k = 1√

2
(Bk − iAk). (2)

The anticommutation relations satisfied by elements Ak,Bl, B translate then into

{B,Ck} = {
B,C

†
k

} = {Ck,Cl} = {
C

†
k, C

†
l

} = 0,{
Ck,C

†
l

} = 2δkl .
(3)

The total of 64 elements of Clifford algebra may be grouped into four sets of 16 elements
each. The first two sets are composed of linear combinations of the products of an even
number of Ak,Bl , while the latter two sets are built of linear combinations of the products of
an odd number of Ak,Bl . Before we proceed with the full presentation of all elements of the
Clifford algebra, we need to introduce two important even elements: the hypercharge Y and
the third component of the weak isospin I3.

2.1. Hypercharge

In line with [1, 2], the hypercharge is defined as

Y = 1
3Y, (4)

where (summation convention over repeated indices implied)

Y =
∑

k

Yk = − i

2
[Ak,Bk]B = −1

2

[
Ck,C

†
k

]
B. (5)

The 4 × 4 analogues of Y and Yk will be denoted by y and yk:

Y = y ⊗ σ0 =
∑

k

Yk =
3∑

k=1

yk ⊗ σ0 = σk ⊗ σk ⊗ σ0. (6)

3



J. Phys. A: Math. Theor. 42 (2009) 045204 P Żenczykowski

One finds that y and yk’s satisfy the following equations:

y2
1 = y2

2 = y2
3 = +1,

yiyj = −yk (i �= j �= k �= i),

y1y2 + y2y3 + y3y1 = −y, (7)

y1y2y3 = −1,

y2 + 2y − 3 = 0.

Matrices yk, y commute among themselves: [yk, yl] = [yk, y] = 0 for any k, l and,
consequently, they may be simultaneously diagonalized. Analogous statements hold for
Y and Yk . From the last equation in (7) it follows that the eigenvalues of y are +1 (which
is triple degenerate) and −3. The three ways of building the eigenvalue y = +1 out of
the eigenvalues ±1 of y1, y2 and y3 are identified with the colour degree of freedom. The
corresponding eigenvalues of Y are + 1

3 and −1, as appropriate for the description of coloured
quarks and leptons. For more details, see [1–3].

2.2. Weak isospin

The weak isospin I3 is related to the seventh anticommuting element of the algebra:

I3 = 1
2B. (8)

Furthermore (using the convention that underlined repeated indices are not summed over), we
define the following products of B,Y and Yk:

Rk = YkB = − 1
2

[
Ck,C

†
k

]
, R = YB = − 1

2

[
Ck,C

†
k

]
. (9)

As is easily checked, all elements introduced so far, i.e. Y,Yk, B,R and Rl , commute with
each other. Following the proposal of [1], the charge operator is then naturally obtained from
the linearization of Rz as

Q = I3 +
Y

2
. (10)

2.3. Projection operators

In the following, we will need projection operators for the subspaces of definite I3 and Y. For
the I3 = ± 1

2 isospin subspaces, they are given by

I± 1
2

= 1
2 ± I3. (11)

For the subspaces of hypercharge Y = −1, + 1
3 the projection operators are

Y−1 = 1 − Y
4

, Y+ 1
3

= 3 + Y
4

. (12)

As discussed in [1–3], the colour subspace #k is characterized by the set of eigenvalues
(yk = −1, yli = +1 for l1,2 �= k). The relevant projection operator is then

Y+ 1
3 ,k = 1

4
(1 + Y − 2Yk) = 3 + Y

4
· 1 − Yk

4
, (13)

and it obviously satisfies∑
k

Y+ 1
3 ,k = Y+ 1

3
. (14)

In the subsequent sections, the products of projection operators in the I3 = ±1/2 and
Y = −1, +1/3 subspaces will often occur. Consequently, it is appropriate to introduce
the following compact notation:

Y±
−1 = I± 1

2
Y−1, Y±

+ 1
3

= I± 1
2
Y+ 1

3
, Y±

+ 1
3 ,k

= I± 1
2
Y+ 1

3 ,k. (15)
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3. Even elements of Clifford algebra

The 15 generators of SU(4) are represented via the commutators among Ak,Bl . In terms of
Ck,C

†
l , the relevant shift operators are expressed as follows:

Hkl = − 1
4

[
Ck,C

†
l

] = (Hlk)
†,

Hm0 = − 1
8εmkl[Ck,Cl] = − 1

4εmklCkCl, (16)

H0m = + 1
8εmkl

[
C

†
k, C

†
l

] = + 1
4εmklC

†
kC

†
l .

The set of Hkl’s contains the U(1) generator Hkk and the eight traceless SU(3) shift operators
Hkl − 1

3δklHmm. Elements Hm0 and H0m constitute the ‘genuine’ SU(4) shift operators.
Since elements Hkl,Hm0 and H0m commute with I3, it is natural to introduce their

projections onto the I3 = ± 1
2 subspaces:

H±
nk = HnkI± 1

2
, H±

n0 = Hn0I± 1
2
,

H±
0n = H0nI± 1

2
, I± 1

2
= 1 · I± 1

2
.

(17)

Thus, the 32 even elements are divided into two commuting sets composed of 16 elements
each, corresponding to sectors of given I3 = ± 1

2 .

3.1. U(1) ⊗ SU(3) generators

3.1.1. The U(1) ⊗ SU(3) structure. The standard SU(3) generators Fb’s (b = 1, . . . , 8) are
built from Hnk as in equation (68) of [1], with explicit form of Hnk’s given in appendix A.
When the projections of Fb’s onto the I3 = ±1/2 subspaces are defined as

F±
a = FaI± 1

2
, (18)

the two sets of F τ
a (with τ = ± labelling the subspaces of definite I3 = τ 1

2 ) operate in disjoint
subspaces:

F±
b F∓

c = 0. (19)

The Fτ
a ’s satisfy standard SU(3) commutation relations[

F τ
a , F τ

b

] = 2ifabcF
τ
c , (20)

with fabc being the relevant structure constants (see [1]).
Since all Fb’s commute with Y, it is also natural to consider the projections of Fτ

b onto
the triplet and singlet subspaces. With

Y−1F
τ
b = F τ

b Y−1 = 0, (21)

it follows that Fτ
b ’s are equal to their projections onto the triplet subspace:

F τ
b = Y+ 1

3
F τ

b Y+ 1
3
. (22)

Together, the eight generators Fb of SU(3) and the six ‘genuine’ SU(4) shift operators
Hm0,H0m make 14 generators. The 15th generator of SU(4) is proportional to the U(1)

generator R , and in the same normalization it is

F15 ≡ 1√
6
R =

√
6YI3, (23)

with R = 2Hkk = σk ⊗ σk ⊗ σ3, and its projections R± = RI± 1
2

commuting with F τ
b :[

R±, F τ
b

] = 0. (24)

The four projection operators from the first two lines of equation (15) are constructed from
elements R± and I± 1

2
.

5
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If X may be represented as a product of a certain definite number of elements Ck and C
†
l ,

its U(1) properties are specified by ν(X) defined as

[R,X] = +2ν(X)X. (25)

The value of ν(X) gives the number of C
†
k’s minus the number of Cl’s present in the product

in question. Thus, ν(Fb) = 0.

3.1.2. Transformations of Ck and C
†
k . Shift operators Hkl act on Cn and C

†
n as follows (for

any k, l, n):

[Hkl, Cn] = −δlnCk,
[
Hkl, C

†
n

] = +δknC
†
l . (26)

In particular, under SU(3) transformations, elements Ck transform as a triplet, while C
†
k as an

antitriplet:

[Fa, Ck] = λaklCl,
[
Fa, C

†
k

] = −λ∗
aklC

†
l , (27)

where λakl may be read off from

[F1, C2] = [F3, C1] = [F4, C3] =
√

3[F8, C1] = −C1,

[F1, C1] = −[F3, C2] = [F6, C3] =
√

3[F8, C2] = −C2,

[F4, C1] = [F6, C2] = −
√

3
2 [F8, C3] = −C3,

[F2, C2] = [F5, C3] = −iC1,

[F2, C1] = −[F7, C3] = +iC2,

[F5, C1] = [F7, C2] = +iC3

(28)

(the remaining commutators are zero). For C
†
k (antitriplet) the relevant commutation relations

are obtained by taking the Hermitian conjugate of the above. Under U(1) we have

[R,Ck] = −2Ck,
[
R,C

†
k

] = +2C
†
k, (29)

i.e. ν(Ck) = −ν
(
C

†
k

) = −1. Under ordinary reflections P = exp
(−iπ

2 R
) = −iB, element

Ck(C
†
k) changes sign:

PCkP−1 = −Ck. (30)

3.2. Genuine generators of SU(4)

The six additional shift operators Hm0 and H0m satisfy

H0m = (Hm0)
† (31)

and constitute ‘genuine’ SU(4) operators. Their explicit forms are given in appendix A.
Shift operators Hτ

m0 and Hτ
0m act between subspaces with different eigenvalues of Y:

H +
m0 = Y +

−1Hm0Y
+
+ 1

3
, H−

m0 = Y−
+ 1

3
Hm0Y

−
−1,

H +
0m = Y +

+ 1
3
H0mY +

−1, H−
0m = Y−

−1H0mY−
+ 1

3
,

(32)

i.e. they connect the triplet and singlet SU(3) subspaces with each other, as also indicated by
subscripts ‘m0’ and ‘0m’ of our notation. The six ‘genuine’ Hermitean generators of SU(4)

are built from Hτ
m0 and Hτ

0m as

F τ
+n = Hτ

n0 + Hτ
0n, F τ

−n = i
(
Hτ

n0 − Hτ
0n

)
. (33)

Elements F τ
−n describe simultaneous rotations in x and p spaces in mutually opposite senses

(counterparts to ordinary simultaneous rotations in likewise senses).

6
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3.2.1. Transformation properties of Hm0 and H0m. The U(1) ⊗ SU(3) transformation
properties of Hm0 and H0m are (for any k, l,m)[
Hτ

kl, H
τ
m0

] = +δmkH
τ
l0 − δklH

τ
m0,

[
Hτ

kl, H
τ
0m

] = −δmlH
τ
0k + δklH

τ
0m. (34)

From the point of view of SU(3) (traceless generators, i.e. either k �= l, or appropriate linear
combinations of terms with k = l), the second term on the rhs above does not contribute.
Thus, the above equation shows that the SU(3) transformation properties of Hτ

m0 coincide
with those of C

†
m in equation (26), i.e. with antitriplet, while the H0m’s transform like Cm, i.e.

an SU(3) triplet. In other words, we have[
F τ

a ,Hτ
0k

] = λakmHτ
0m,

[
F τ

a ,Hτ
k0

] = −λ∗
akmHτ

m0. (35)

From equation (34) we further obtain that elements Hτ
m0 and Hτ

0m transform under U(1) like[
Rτ ,Hτ

m0

] = −4Hτ
m0,

[
Rτ ,Hτ

0m

] = +4Hτ
0m, (36)

i.e. Hτ
m0 transform like a simple product of two Ck’s (and not like a single C

†
m), with R

eigenvalues of Ck’s simply added, while Hτ
0m transform like a product of two C

†
k’s (see

equations (41)). Obviously

ν
(
Hτ

0m

) = −ν
(
Hτ

m0

) = +2. (37)

For completeness, we also give the anticommutators (for any k, l,m):{
H±

kl , H
±
m0

} = ∓δkmH±
l0 ,

{
H±

kl , H
±
0m

} = ∓δlmH±
0k, (38)

and the products of genuine SU(4) shift operators themselves:

Hτ
m0H

τ
n0 = Hτ

0mHτ
0n = 0,

H0nHm0 = 1
4δnm(1 + R) − H +

nm, (39)

Hm0H0n = 1
4δnm(1 − R) + H−

nm.

From the latter formulae one gets[
Hτ

0n,H
τ
m0

] = 1
2δnmRτ − Hτ

nm,
{
Hτ

0n,H
τ
m0

} = 1
2δnmIτ 1

2
− τHτ

nm. (40)

3.2.2. Transformations of Ck and C
†
k . Under the action of Hm0 and H0m, matrices Cn and

C
†
n transform as follows:

[Hm0, Cn] = 0, [H0m,Cn] = −εmnjC
†
j ,[

H0m,C†
n

] = 0,
[
Hm0, C

†
n

] = +εmnjCj .
(41)

This translates into

[F+n, Ck] = −εnklC
†
l ,

[
F+n, C

†
k

] = +εnklCl (42)

and

[F−k, Cl] = +iεklmC†
m,

[
F−k, C

†
l

] = +iεklmCm. (43)

To summarize, the 32 even elements of the Clifford algebra are composed of the unit element
and the 15 generators of SU(4), with each of these 16 elements multiplied by I± 1

2
. These

two sets commute with each other. Under the SU(3) transformations each set decomposes
into two singlets (i.e. projection operators), an octet, a triplet and an antitriplet. All elements
stay invariant under ordinary reflection. The full decomposition is given in table 1. The first
two columns of the table describe transformation properties under U(1) (the value of ν) and
SU(3) (representation). The four rightmost columns specify the left and right eigenvalues
Yl, Yr (and Ql,Qr ) of Y (and Q), defined for Y as

YZ = YlZ ZY = YrZ, (44)

with Z = H +
m0,H

+
0m, F +

b , . . . , etc, and similarly for charge Q (equation (10)).

7
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Table 1. U(1)⊗SU(3) classification of 32 even elements of Clifford algebra. In the four rightmost
columns the relevant left and right eigenvalues of Y and Q are given.

U(1) SU(3) Yl Yr Ql Qr

Sector I3 = + 1
2

−2 3̄ H +
m0 −1 + 1

3 0 +2/3
+2 3 H +

0m + 1
3 −1 +2/3 0

0 8 F +
b + 1

3 + 1
3 +2/3 +2/3

0 1 Y +
−1 −1 −1 0 0

0 1 Y +
+ 1

3
+ 1

3 + 1
3 +2/3 +2/3

Sector I3 = − 1
2

−2 3̄ H−
m0 + 1

3 −1 −1/3 −1
+2 3 H−

0m −1 + 1
3 −1 −1/3

0 8 F−
b + 1

3 + 1
3 −1/3 −1/3

0 1 Y−
−1 −1 −1 −1 −1

0 1 Y−
+ 1

3
+ 1

3 + 1
3 −1/3 −1/3

4. Odd elements of Clifford algebra

The even elements of Clifford algebra are diagonal in I3. In order to discuss the odd elements,
we define weak isospin raising and lowering operators I+ and I−:

I+ = σ0 ⊗ σ0 ⊗ σ1 + iσ2√
2

∝ A1A2A3 + iB1B2B3, (45)

with I− = I
†
+. With elements I± being odd, the odd elements of Clifford algebra, i.e. sets (3)

and (4) are then obtained via multiplication by I± of the (even) elements of the first two sets.
Obviously, the odd elements are off-diagonal in I3 and change sign under ordinary reflection.
All odd elements may be obtained from products of an odd number (one or three) of Ck’s
and C

†
l , with these products multiplied from left and right by the (even) projection operators

corresponding to subspaces of definite Y and I3.

4.1. SU(3) triplets and antitriplets

We now project Ck (either from the left or from the right) onto subspaces of definite Y and I3,
and define Wk, Vk, Uk as follows:

Wk = iY +
−1Ck = iCkY

−
+ 1

3
, Vk = iY +

+ 1
3
Ck = iCkY

−
−1,

Uk = iY−
+ 1

3
Ck = iCkY

+
+ 1

3
, 0 = Y−

−1Ck = CkY
+
−1.

(46)

They satisfy

Wk + Vk + Uk = iCk. (47)

Explicit expressions for Uk, Vk,Wk are given in appendix A.
Since Fa commute with I3 and Y, it follows that Uk, Vk and Wk transform under SU(3)

just like Ck , i.e. they are SU(3) triplets. Thus, we have

[Fa, Vk] = F +
a Vk = λaklVl,

[Fa,Wk] = −WkF
−
a = λaklWl, (48)

[Fa,Uk] = F−
a Uk − UkF

+
a = λaklUl.

8
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The Hermitean conjugates U
†
k , V

†
k and W

†
k transform like C

†
k and are antitriplets. Similarly,

since R commutes with Y and I3, it follows that Uk, Vk and Wk transform under U(1) just
like Ck:

[R,Uk] = −2Uk, [R,Vk] = −2Vk, [R,Wk] = −2Wk, (49)

i.e. the values of ν are still well defined:

ν(Uk) = ν(Vk) = ν(Wk) = −1. (50)

Multiplication rules for elements Uk, Vl,Wm and their Hermitean conjugates are given in
appendix B. When expressed in terms of Uk, Vl and Wm, the U(1) ⊗ SU(3) generators in
I3 = ± 1

2 subspaces are

H +
kl = − 1

4

(
VkV

†
l + WkW

†
l − U

†
l Uk

)
, H−

kl = + 1
4

(
V

†
l Vk + W

†
l Wk − UkU

†
l

)
. (51)

For the genuine SU(4) shift operators, we have

H +
m0 = + 1

4εmklWkUl, H−
m0 = + 1

4εmklUkVl,

H +
0m = − 1

4εmklU
†
kW

†
l , H−

0m = − 1
4εmklV

†
k U

†
l .

(52)

4.2. SU(3) singlets

The only nonzero products that one can form from Ck’s are CkCl (i.e. Hm0) and the totally
antisymmetric product C1C2C3. We now define

εmknG0 = 1
2CmCkCn = 1

8 {[Cm,Ck], Cn}, (53)

with the mixed product {[Cm,Ck], Cn} satisfying

{[Ck,Cn], Cm} = {[Cm,Ck], Cn} = {[Cn,Cm], Ck}. (54)

The explicit form of G0 is given in appendix A.
Using equation (16) we may rewrite G0 also as

G0 = − 1
2 {Hk0, Ck} = 1

16εmnk{[Cm,Cn], Ck}. (55)

Element G0 is diagonal in Y:

G0 = Y +
−1G0 = G0Y

−
−1, 0 = Y−

−1G0 = G0Y
+
−1. (56)

Thus, G0 (and G
†
0) require Y = −1 and correspond to leptons. With Y±

−1 being projection
operators onto the SU(3) singlet subspace, it is obvious from (21) that G0 is a SU(3) singlet:

[Fb,G0] = 0. (57)

This is also seen from equation (55) which (when summed over k) contains a trace of the
product of a triplet Ck and an antitriplet Hk0. Element G0 transforms under U(1) as (e.g. using
equation (29)):

[R,G0] = −6G0, (58)

i.e. ν(G0) = −3.
In terms of Uk, Vl and Wm, we have

G0 = +
i

12
εmknWmUkVn, G

†
0 = +

i

12
εmknV

†
mU

†
kW

†
n, (59)

i.e., G0,G
†
0 are proportional to weak isospin raising and lowering operators in lepton subspace

(consult the left and right eigenvalues of I3 for Wk and Vl , equation (46)).
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4.3. SU(3) sextets and antisextets

In analogy to equation (55), we now form elements G{kl} defined as (for any k, l)

G{kl} = 1
4 ({H0k, Cl} + {H0l , Ck}). (60)

Element G{kl} is built as a symmetric combination of a product of two triplets: Cl and H0k ,
and, consequently, it is a sextet. Its h.c. element G

†
{kl} is an antisextet. Their explicit forms are

given in appendix A.
Under U(1) ⊗ SU(3) the sextet transforms as

[Hkl,G{mn}] = −δlmG{kn} − δlnG{km} + δklG{mn}. (61)

For the SU(3) (i.e. traceless) generators the last term on the rhs above does not contribute. It
contributes only when one evaluates the commutator of the sum Hkk with G{mn}, which leads
to the following behaviour of G{mn} under U(1):

[R,G{mn}] = +2G{mn}, (62)

i.e. ν(G{mn}) = +1.
Furthermore, for any k, l one has

G{kl} = Y +
+ 1

3
G{kl} = G{kl}Y−

+ 1
3
, 0 = Y−

+ 1
3
G{kl} = G{kl}Y +

+ 1
3
, (63)

and similarly for G
†
{kl}. Thus, G{kl} is equal to its projection onto the Y = + 1

3 (i.e. quark)
subspace.

When k = l equation (60) reduces to

Gn ≡ G{nn} = + 1
2 {H0n, Cn} = 1

16εmkn

{[
C†

m,C
†
k

]
, Cn

}
, (64)

which constitutes a counterpart of equation (55) with mixed product {[C†
m,C

†
k], Cn} replacing

{[Cm,Ck], Cn} and satisfying{[
C†

m,C
†
k

]
, Cn

} = {[
Cn,C

†
m

]
, C

†
k

} = {[
C

†
k, Cn

]
, C†

m

}
. (65)

Explicitly, we have

Gn = Y+ 1
3 ,nI+, G†

n = Y+ 1
3 ,nI−, (66)

with Gn

(
G

†
n

)
containing projection operators onto colour subspace #n. These are essentially

weak isospin raising and lowering operators for quarks of a given colour.
In terms of Uk, Vl,Wm, the elements G{kl} and G

†
{kl} may be expressed in various ways

(using relations (B.4)) with the simplest form being

G{kl} = − i

8
U †

r (εkrsUl + εlrsUk)U
†
s , G

†
{kl} = +

i

8
Us(εkrsU

†
l + εlrsU

†
k )Ur . (67)

To summarize, under the SU(3) transformations the 16 elements proportional to σ1 + iσ2

decompose into an antitriplet, two triplets, a sextet and a singlet. Similar decomposition holds
for the h.c. elements proportional to σ1 − iσ2. The full decomposition is given in table 2.

5. The concept of mass

5.1. From U(1) ⊗ SU(3) to SO(3)

The basic physical idea motivating our approach is that the familiar macroscopic notions of
space, time, etc are emergent concepts, which do not exist at the ‘true’ quantum level in
any form other than a very rudimentary one. This idea was pursued in various contexts by
many. For instance, Penrose suggested spin as a precursor of the concept of direction in the

10
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Table 2. U(1)⊗SU(3) classification of 32 odd elements of Clifford algebra. In the four rightmost
columns the relevant left and right eigenvalues of Y and Q are given.

U(1) SU(3) Yl Yr Ql Qr

Sector I3,l = + 1
2 , I3,r = − 1

2

+1 3̄ U
†
k + 1

3 + 1
3 +2/3 −1/3

−1 3 Vk + 1
3 −1 +2/3 −1

−1 3 Wk −1 + 1
3 0 −1/3

+1 6 G{kl} + 1
3 + 1

3 +2/3 −1/3

−3 1 G0 −1 −1 0 −1

Sector I3,l = − 1
2 , I3,r = + 1

2

−1 3 Uk + 1
3 + 1

3 −1/3 +2/3

+1 3̄ V
†
k −1 + 1

3 −1 +2/3

+1 3̄ W
†
k + 1

3 −1 −1/3 0

−1 6̄ G
†
{kl} + 1

3 + 1
3 −1/3 +2/3

+3 1 G
†
0 −1 −1 −1 0

3D space [10]. Page and Wootters proposed that quantum correlations could give rise to the
macroscopic concept of time [11]. The general idea was succinctly expressed by Wheeler
as ‘Day One—quantum principle, Day Two—geometry’ [12]. It was also pointed out that
causality and quantum prescriptions, when combined, suggest the existence (or emergence) of
a preferred frame [13] and absolute simultaneity. I believe therefore that mixing the ordinary
3D space with time, characteristic of the standard form of special relativity, should not be
used as a starting point to seek the underlying ‘true’ quantum level. Instead, with quantum
mechanics living in phase space, it is the mixing of the 3D space of positions with the 3D space
of momenta which should be more appropriate. In line with these ideas, the concept of 3D
rotations in ordinary space—understood as same-size and same-sense rotations in momentum
and position subspaces—is in our approach extended to 6D rotations in phase space. This
requires introduction of a new physical constant of dimension (momentum/position). At the
quantum level, with the Planck constant at our disposal, the mass scale is then set. This
quantum level is therefore expected to contain not only spin, but also some quantum ideas
about the concept of mass. I believe therefore that a part of the problem of mass quantization
should find its resolution at the level of 6D rotations in the algebra underlying nonrelativistic
phase space. In other words, I think that this algebra (or perhaps its appropriate generalization)
should lead to a joint quantum treatment of both masses and spins. The approach of [1–4]
and of this paper constitute but a first step in that direction. Speaking more generally, the
idea of ‘space quantization’ (or rather ‘finding the underlying quantum-level precursors of
3D space’) is naturally replaced in the phase space approach by similarly understood ‘phase-
space quantization’. Thus, when ‘space’ is understood as ‘phase-space’, the problem of ‘space
quantization’ and the problem of elementary particle mass spectrum (and of their quantum
numbers) seem closely related. I am tempted to think of them as of conceptually one and the
same problem.

While the main idea of [1–3] is concerned with rotations in phase space, the treatment
of reflections, although explicit, is extremely simplified when compared to what the SM tells
us about the quantum world of elementary particles. Yet, reflection at the quantum level has

11
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to be properly treated if the space (phase space) points are to emerge with their real-world
properties. This puts a question mark with respect to the introduction of the gauge principle
into our present scheme. One could perhaps satisfy oneself with a ‘mixed’ (i.e. classical-
quantum) level of theory and introduce the gauge structure at least for the U(1)⊗ SU(3) part.
We should be then back at the field-theoretical SM level of description. I think, however, that
such a procedure will be fully legitimate only when a better understanding of how to generate
space (phase space) points is reached. Consequently, in this paper we do not address the issue
of gauge invariance. The latter should appear in its full form only on ‘Day Three’.

In the standard model the mass-generating prescription (i.e. Higgs mechanism) lies outside
of the strict gauge structure of the theory. Gauge interactions tell us nothing about the masses
of the fundamental particles. In fact, these masses have to be put into SM by hand. Thus, in the
SM the problem of mass appears to be separate from gauge interactions. Consequently, in our
approach we should also expect some separation between the U(1) ⊗ SU(3) group structure
(related to phase-space symmetries) and the mass generating mechanism. The overall scheme
is thus anticipated to contain the following two ingredients:

(1) The mass-independent part, i.e. the symmetry group U(1) ⊗ SU(3) (combined with
SU(2)). It is related to the nonrelativistic rotational (and reflectional) symmetry
generalized to O(6), with the generalization assumed valid at each point of our 3D
world. Consequently, it should survive the emergence of space (and time) points and
constitutes a conjectured precursor of the SM gauge group.

(2) A separate mass-defining prescription. This prescription must be tied to the standard
concept of mass. This means it has to be related to the choice of which three coordinates
of the 6D phase space are to be considered as the standard momentum coordinates, or, in
other words, how U(1) ⊗ SU(3) is embedded into SU(4), and which three of the eight
SU(3) generators constitute the ordinary rotations of our 3D macroscopic world. At
the quantum level, therefore, the relevant quantum-level prescription for mass should be
related to spin (and its quantization). Despite the connection of internal symmetry to the
space degrees of freedom, our approach should evade the conclusions of the Coleman–
Mandula theorem [14]. Indeed, the latter applies only to those symmetries which show up
explicitly in the S-matrix approach, i.e. for ordinary particles with their standard concept
of mass. Our quarks, however, though intimately related to phase-space symmetries
[1–3], should be absent at the S-matrix level (i.e. confined), as the non-standard properties
of quark mass (section 5.3) suggest. Obviously, this indicates that the issue of quark
confinement and the description of systems composed of quarks constitute important
questions to be addressed in our approach.

The appearance of the standard concept of mass is here linked with the restriction of
the precursor of the unbroken part of the SM gauge group to ordinary O(3). This may be
considered strange. Yet, it seems to follow naturally from the assumptions of our approach,
which look very appealing. Thus, one feels forced to accept their consequences. In summary,
the problem of mass quantization is thought to belong to the underlying quantum level. On
the other hand, the standard description of electromagnetic and strong interactions is expected
to be the emergent one, with the underlying U(1) ⊗ SU(3) symmetry group conjectured to
survive (in the form of gauge group) the procedure of mass quantization.

5.2. Lepton mass term

As argued above, we must tie our scheme to the standard concept of mass. Now, lepton mass
is certainly standard since it appears in a relation which connects lepton energy (kinetic energy

12
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in nonrelativistic case), momentum and mass. Consequently, we must start from the lepton
mass term. In order to discuss it, we first note that in our Clifford algebra there are only
four elements which are both diagonal in Y and have Y = −1, as appropriate for the leptons.
These are the (even) projection operators Y±

−1 and the (odd) elements G0 and G
†
0. The latter

two terms are SU(3) singlets and SO(3) scalars and, being odd like Ak (which is related to
momentum), they constitute natural candidates for the elements related to lepton mass and
kinetic energy.

As we show below, the nonrelativistic expression relating kinetic energy, mass and
momentum gets linearized in our algebra by the consideration of the following linearized
forms:

L1 = Y−1
(
Akpk − m1G0 + EG

†
0

)
,

L2 = (
Akpk − m2G0 + EG

†
0

)
Y−1.

(68)

(Obviously, we could consider similar forms with G0 ↔ G
†
0.) The Y−1 projection operator

appears here because our goal is the treatment of leptons. The presence of Y−1 (which
commutes with ordinary 3D rotations) is irrelevant for the G0 and G

†
0 terms since Y−1G0 =

G0, Y−1G
†
0 = G

†
0, etc, but it affects the terms containing Ak .

Elements G0 and G
†
0 are not invariant under reflection. This is not a feature expected for

mass (energy) terms. Yet, a similar lack of reflection invariance was observed in a fully-fledged
Galilean framework [15]. This might be thought of as an indication that in the nonrelativistic
Clifford algebra approach the treatment of reflection is oversimplified, as argued in the previous
subsection. On the other hand, this persistent appearance of the violation of parity invariance
might also be considered an interesting feature of the nonrelativistic approach. In any case,
whatever point of view concerning the treatment of reflections one adopts, all our conclusions
regarding the rotational properties should stay unaffected.

Since Y−1AkY−1 ∝ Y−1(C
†
k − Ck)Y−1 = 0 it follows that

L1L2 = Y−1
(
AkAnpkpn − m1EG0G

†
0 − m2EG

†
0G0

)
Y−1

= Y−1
(
AkAnpkpn − 2m1EY +

−1 − 2m2EY−
−1

)
Y−1

= Y +
−1(p

2 − 2m1E) + Y−
−1(p

2 − 2m2E) (69)

where we used equation (B.7), i.e.

(G0)
2 = (

G
†
0

)2 = 0, G0G
†
0 = 2Y +

−1, G
†
0G0 = 2Y−

−1. (70)

Thus, nonrelativistic expressions for kinetic energies of massive leptons of a given third
component of isospin are obtained. To sum up, in the language of the Clifford algebra of
nonrelativistic phase space the lepton mass term corresponds to element G0 (or G

†
0).

5.3. Quark mass term

We now want to transform the lepton mass element into the quark mass element. In [2, 3]
it was shown that the transformation from lepton to quark #2 and vice versa is obtained by
choosing φ = +π/2 in the genuine phase-space rotation operator

R02,±(φ) = e+iφF±2 . (71)

Since this lepton-to-quark transformation constitutes an important part of the present paper,
we repeat this calculation for the relevant projection operators.

In order to study the action of R02,± ≡ R02,±(+π/2), we first note that (F±n)
3 = F±n.

Therefore

R02,± = 1 + iF±2 − (F±2)
2. (72)
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Then, we calculate

F±2Yk = ∓i(1 − δ2k)F∓2B − δ2kF±2,

(F±2)
2Yk = 1

2 (1 − δ2k)(Y − Y2) − 1
2δ2k(1 − Y2),

(73)

and find that

R02,±Y1R−1
02,± = −Y3, R02,±Y2R−1

02,± = +Y2, R02,±Y3R−1
02,± = −Y1. (74)

Thus, the projection operators transform as

R02,±Y+ 1
3 ,1R−1

02,± = Y+ 1
3 ,1, R02,±Y+ 1

3 ,2R−1
02,± = Y−1,

R02,±Y+ 1
3 ,3R−1

02,± = Y+ 1
3 ,3, R02,±Y−1R−1

02,± = Y+ 1
3 ,2,

(75)

i.e. quark #2 and lepton are interchanged.
In order to know how lepton mass element G0 transforms, we need to know the individual

actions of F±2 and (F±2)
2 on various odd elements of Clifford algebra. The relevant formulae

are gathered in appendix B. Using equations (B.18) we get

R02,±G0R−1
02,± = ∓G2, R02,±G1R−1

02,± = +G1,

R02,±G2R−1
02,± = ∓G0, R02,±G3R−1

02,± = +G3.
(76)

Thus, the lepton mass element G0 is transformed by the R02,∓-induced transformations
into ±G2 (and vice versa). Consequently, element G2, a member of SU(3) sextet, should
correspond to the mass term of quark #2. Just like in the case of the commutation relations
for a quark of a given colour (see [2, 3]), this mass term is not rotationally invariant. We shall
comment on this lack of rotational invariance somewhat later.

The difference between R02,−- and R02,+-induced transformations is a U(1) ⊗ SU(3)

phase factor F{13}:

F{13}R02,− ≡ exp
(

i
π

2
F{13}

)
R02,− = (

1 + iF{13} − F 2
{13}

)
R02,− = R02,+, (77)

where

F{13} ≡ 1

2
F3 − 1

2
√

3
F8 +

1

3
R = H11 + H33. (78)

This U(1) ⊗ SU(3) factor keeps commutation relations invariant. Under F{13}-induced
transformations, elements G0 and G2 change signs, while G1 and G3 stay invariant. The
total reflection, i.e. in particular G0,Gk → −G0,−Gk(k = 1, 2, 3), is obtained through the
consecutive action of F{13}-, F{23}- and F{12}-induced transformations.

5.4. SO(3) scalars

Individual elements corresponding to masses of coloured quarks, i.e.

Gk = G{kk} (79)

belong to the SU(3) sextet. When summed over quark colours, we obtain the trace of the
symmetric matrix G{kl}, i.e.

G ≡ G{kk} = ±R0k,∓G0R−1
0k,∓, (80)

which is an SO(3) scalar. Thus, when added, the three rotationally-noninvariant individual
quark mass elements give an SO(3)-invariant overall mass element. This provides an example
of quark conspiration, a conjecture originally put forward in [1–4]. Interestingly (especially
for a Clifford algebra approach), the quark mass element appears to be a trace of a rank 2
symmetric tensor in our 3D world.
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The products of the quark mass elements G and G† are (using equations (B.8) and (B.12)):

G2 = (G†)2 = 0, GG† = GnG
†
n = 2Y +

+ 1
3
, G†G = G†

nGn = 2Y−
+ 1

3
, (81)

mirroring the behaviour of the products of G0 and G
†
0 (equation (70)), but in the Y = + 1

3

subspace. In particular, the latter two expressions, just like G0G
†
0 and G

†
0G0, are invariant

under both rotations and reflections.
The odd element I+, with which we started in equation (45), is a linear superposition of

SU(3) singlet (G0) and sextet (G{kk}) terms:

I+ = G0 + G, (82)

with G0 and G proportional to weak isospin raising (lowering) operators in lepton and quark
subspaces, respectively. The explicit form of G is given in appendix A.

5.5. Relation to phase space

By direct calculation using equations (42) and (43), or with the help of appendix B and
equation (47), we find

C̃k = R0n,−CkR−1
0n,− = δknCn + εknmC†

m, (83)

C̃ ′
k = R0n,+CkR−1

0n,+ = δknCn + iεknmC†
m. (84)

Obviously, when acted upon by the appropriate U(1) ⊗ SU(3) transformation (as in
equation (77)), C̃k goes over into C̃ ′

k .

5.5.1. R02,−-induced transformations. For the R02,− transformations one gets

Ãk = A2δ2k + ε2knAn, B̃k = B2δ2k − ε2knBn, (85)

and similarly for the related transformations of momenta and positions:

p̃k = p2δ2k + ε2knpn, x̃k = x2δ2k − ε2knxn. (86)

Then

p2 → p̃2 = p2, x2 → x̃2 = x2. (87)

This transformation is somewhat similar to ordinary rotations in that it does not ‘mix’ the
physical momentum and physical position spaces. The difference is that rotation in each
subspace proceeds here in the sense opposite to that in the other subspace.

5.5.2. R02,+-induced transformations. For the R02,+ transformations one has

Ã′
k = δ2kA2 − ε2knBn, B̃ ′

k = δ2kB2 − ε2knAn (88)

and similarly for the related transformations of momenta and positions:

p̃′
k = δ2kp2 − ε2knxn, x̃ ′

k = δ2kx2 − ε2knpn. (89)

Thus

p2 → (p̃′)2 = x2
1 + p2

2 + x2
3 , x2 → (x̃′)2 = p2

1 + x2
2 + p2

3. (90)

The above behaviour is different from the R02,− case. In the R02,+ case it is only its double
application that leads to the preservation of p2 and x2.
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5.5.3. Permutations of phase-space variables. Connection between the above two genuine
SU(4) transformations is given by the U(1)⊗SU(3) phase factor of equation (77). This factor
changes some position coordinates into momenta and vice versa while keeping commutation
relations invariant. Thus, it violates the association between e.g. lepton mass and momentum.
Consequently, it seems natural to suppose that, when talking about the concept of mass, the
U(1)⊗SU(3) freedom provided by F{13} must be restricted (as argued earlier), and the choice
between R02,± limited to one possibility. I think that the appropriate choice is provided by
R02,+, which does not keep the distinction between physical momenta and positions and may
be considered more ‘primitive’ than the R02,−. As discussed in [3], this choice corresponds to
the third alternative (obtained from equation(89) via ordinary 3D rotation by π/2 around the
second axis) of the following four choices for the ‘generalized momenta’ Pk and ‘generalized
positions’ Xk:[

P1, P2, P3

X1, X2, X3

]
=

[
p1, p2, p3

x1, x2, x3

]
,

[
p1, x2, x3

x1, p2, p3

]
,

[
x1, p2, x3

p1, x2, p3

]
,

[
x1, x2, p3

p1, p2, x3

]
, (91)

which are possible when pairs of permutations (xk, xl) ↔ (pk, pl) are admitted. Such pairs
of permutations keep an odd number of pk’s in P and xk’s in X, and never permit a complete
interchange P ↔ X. Thus, some distinction between physical momentum and physical
position is still preserved. When expressed in terms of Pk and Xl , the commutation relations
for each choice are then identical:

[Pk, Pl] = 0, [Xk,Xl] = 0, [Xk, Pl] = iδkl . (92)

Alternatively, one may replace i with − i, which is equivalent to (92) after genuine reflections
in phase space are performed (e.g. P → P, X → −X). The above commutation formulae are
invariant under ‘generalized rotations’, appropriately and independently defined for each of
the four alternatives of equation (91).

In my opinion, the emergence of a mass element which—for a quark of given colour—is
not rotationally invariant (and is associated with rotationally noninvariant generalized momenta
which involve components of position) constitutes an asset of the approach, and should be
welcomed in view of the unobservability of free quarks. An object which does not satisfy
the standard relation between energy, mass and momentum clearly cannot be seen as a ‘free
particle’. This string-like idea on the origin of quark unobservability may coexist with the
standard description of strong interactions in terms of non-Abelian SU(3) gauge theory, which
is viewed here as an emergent theory, tested at small distances only (i.e. at large momenta
when standard quark masses should be neglected).

In fact, the application to quarks of the standard concept of mass leads to conceptual
difficulties, discussed at some length in [4]. These difficulties are related to the use of free
solutions of the Dirac equation (i.e. by setting �pψ = mψ) for confined quarks, a standard
procedure used e.g. when quark ‘masses’ are ‘extracted’ from the hadron-level data3. In fact,
precisely such a use of free quark solutions for confined quarks has led to predictions for
weak radiative hyperon decays [16] which disagreed with experiment in a dramatic way. The
problem with the standard approach to quark mass is therefore not only conceptual. So far,
the case of weak radiative hyperon decays has been solved only by a departure from the use
of the Dirac equation for quarks [17], and a treatment of quarks at the level of current algebra
symmetries [18, 19], with the concept of quark mass simply avoided.

3 It is conceptually consistent to consider quark mass as a parameter introduced in a standard (lepton-like) way into
the underlying SM Lagrangian, and to determine this parameter from the observed hadron masses after the latter are
obtained from a full nonperturbative QCD calculation. The problem is that this is not the way in which quark masses
(listed e.g. by Particle Data Group) are extracted from the data.
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6. Conclusions and outlook

In this paper the Clifford algebra of nonrelativistic phase space is discussed in some detail.
We have identified the element which may be associated with lepton mass and transformed
it to the quark sector. The resulting individual quark mass element appears to be rotationally
noninvariant. The total quark mass term was then obtained as a sum of three individual quark
mass elements. In this term the individual rotationally-noninvariant contributions from three
coloured quarks are combined in a rotationally invariant way, in line with the expectations that
quarks should conspire to yield rotationally covariant structures.

We have discussed the one-particle system only. A further development of our approach
should be presumably concerned with the description of nonrelativistic composite systems
built of quarks. Hopefully, the idea of quark conspiracy could then be shown to work for such
systems as well. The question of a connection between total spin and mass should also be
addressed.

The issues related to the emergence of a continuum (space, time, etc), its symmetries, and
in particular an extension of the whole scheme to link it to special relativity and accommodate
gauge interactions, are clearly very important. In my opinion, however, they should be
addressed only if a successful nonrelativistic treatment of composite systems and higher
SO(3) representations is developed.

Appendix A. Explicit expressions

A.1. Even elements

When summed over I3 = ± 1
2 , the even elements have the following explicit forms:

Hnk = 1

4
(σn ⊗ σk + σk ⊗ σn) ⊗ σ3 − i

4
εnkm(σm ⊗ σ0 + σ0 ⊗ σm) ⊗ σ0,

Hn0 = − i

4
[(σ0 ⊗ σn − σn ⊗ σ0) ⊗ σ0 + iεnklσk ⊗ σl ⊗ σ3] ,

H0n = +
i

4
[(σ0 ⊗ σn − σn ⊗ σ0) ⊗ σ0 − iεnklσk ⊗ σl ⊗ σ3] ,

1 = σ0 ⊗ σ0 ⊗ σ0.

(A.1)

The projection operators correspond to the specific combinations:

Y±
−1 = 1

4
(1 − σm ⊗ σm) ⊗ σ0 ± σ3

2
,

Y±
+ 1

3
= 1

4
(3 + σm ⊗ σm) ⊗ σ0 ± σ3

2
.

(A.2)

A.2. Odd elements

The 16 elements proportional to σ1 + iσ2 are (in the order: SU(3) singlet, SU(3) antitriplet,
two SU(3) triplets, SU(3) sextet)

G0 = 1 − y

4
⊗ σ1 + iσ2√

2
,

U
†
k = −1

2
(σ0 ⊗ σk + σk ⊗ σ0) ⊗ σ1 + iσ2√

2
,

Vk = 1

4
[(σ0 ⊗ σk − σk ⊗ σ0) − iεkmnσm ⊗ σn] ⊗ σ1 + iσ2√

2
,
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Wk = 1

4
[(σ0 ⊗ σk − σk ⊗ σ0) + iεkmnσm ⊗ σn] ⊗ σ1 + iσ2√

2
,

G{kl} = 1

4
[δkl(σ0 ⊗ σ0 + σm ⊗ σm) − (σk ⊗ σl + σl ⊗ σk)] ⊗ σ1 + iσ2√

2
. (A.3)

The diagonal elements G{kk} sum up to

G = G{kk} =
∑

k

Gk = 3 + y

4
⊗ σ1 + iσ2√

2
, (A.4)

with

Gk = 1

4
(1 + y − 2yk) ⊗ σ1 + iσ2√

2
. (A.5)

Analogous expressions hold for 16 Hermitian-conjugated elements proportional to σ1 − iσ2.

Appendix B. Products of elements

B.1. Odd–odd

B.1.1. Triplet–triplet. One finds

WkWl = VkVl = UkUl = VkWl = WkVl = VkUl = UkWl = 0, (B.1)

and

WkUl = 2εmklY
+
−1Hm0Y

+
+ 1

3
= 2εmklH

+
m0,

UkVl = 2εmklY
−
+ 1

3
Hm0Y

−
−1 = 2εmklH

−
m0,

(B.2)

with analogous formulae for the h.c. expressions. Furthermore

WkV
†
l = W

†
k Vl = VkU

†
l = V

†
k Ul = UkW

†
l = U

†
kWl = 0, (B.3)

together with h.c. relations. Using equations (46) we have

WkW
†
l = Y +

−1

{
Ck,C

†
l

}
Y +

−1 = 2δklY
+
−1,

V
†
k Vl = Y−

−1

{
C

†
k, Cl

}
Y−

−1 = 2δklY
−
−1,

VkV
†
l + U

†
l Uk = Y +

+ 1
3

{
Ck,C

†
l

}
Y +

+ 1
3

= 2δklY
+
+ 1

3
,

W
†
k Wl + UlU

†
k = Y−

+ 1
3

{
C

†
k, Cl

}
Y−

+ 1
3

= 2δklY
−
+ 1

3
,

VkV
†
l − U

†
l Uk = Y +

+ 1
3

[
Ck,C

†
l

]
Y +

+ 1
3

= −4H +
kl − 2δklY

+
−1,

UkU
†
l − W

†
l Wk = Y−

+ 1
3

[
Ck,C

†
l

]
Y−

+ 1
3

= −4H−
kl + 2δklY

−
−1.

(B.4)

B.1.2. Triplet–singlet. One finds

WkG0 = VkG0 = UkG0 = CkG0 = 0 = G0Ck = G0Wk = G0Vk = G0Uk,

V
†
k G0 = U

†
kG0 = 0 = G0W

†
k = G0U

†
k

(B.5)

and

W
†
k G0 = −iC†

kG0 = 2iY−
+ 1

3
Hk0 = 2iHk0Y

−
−1 = 2iH−

k0,

G0V
†
k = −iG0C

†
k = 2iY +

−1Hk0 = 2iHk0Y
+
+ 1

3
= 2iH +

k0,
(B.6)

and similarly for the h.c. expressions.
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B.1.3. Singlet–singlet

(G0)
2 = (

G
†
0

)2 = 0, G0G
†
0 = 2Y +

−1, G
†
0G0 = 2Y−

−1. (B.7)

B.1.4. Sextet–sextet. From the isospin structure of sextet elements one has (for any k, l,m, n)

G{kl}G{mn} = 0 = G
†
{kl}G

†
{mn}. (B.8)

The products G{kl}G
†
{mn} and G

†
{kl}G{mn} belong to two separate (isospin) subspaces, with the

general formulae (valid for any k, l,m, n) being:

G{kl}G
†
{mn} = 1

2

{(
1
2 + Hjj

)
(δkmδln + δknδlm)

− (δkmHln + δknHlm + δlmHkn + δlnHkm)
}
I+ 1

2
(B.9)

and

G
†
{kl}G{mn} = 1

2

{(
1
2 − Hjj

)
(δmkδnl + δnkδml)

+ (δmkHnl + δnkHml + δmlHnk + δnlHmk)
}
I− 1

2
. (B.10)

Partial cases of the above formulae are (for k �= l !)

G{kl}G
†
{kl} = G{kl}G

†
{lk} = 1

2

(
Y +

+ 1
3 ,k

+ Y +
+ 1

3 ,l

)
,

G
†
{kl}G{kl} = G

†
{kl}G{lk} = 1

2

(
Y−

+ 1
3 ,k

+ Y−
+ 1

3 ,l

)
,

(B.11)

and for any k,m:

GkG
†
m = G{kk}G

†
{mm} = 2δkmY +

+ 1
3 ,m

,

G
†
kGm = G

†
{kk}G{mm} = 2δkmY−

+ 1
3 ,m

.
(B.12)

Furthermore, two more typical cases are (for l �= k, n and n �= k)

G{kl}G
†
{ln} = − 1

2H +
kn, G

†
{kl}G{ln} = + 1

2H−
nk, (B.13)

and (for k �= n)

G{kk}G
†
{kn} = G{nk}G

†
{nn} = −H +

kn,

G
†
{kk}G{kn} = G

†
{nk}G{nn} = +H−

nk.
(B.14)

All other types of products yield zero. To summarize, all expressions on the rhs of the above
equations contain only the unit operator and the generators of U(1) ⊗ SU(3) projected upon
subspaces with I3 = ± 1

2 .

B.1.5. Sextet–triplet. Of all 24 products of G{kl} and G
†
{kl} with Uk, Vk,Wk,U

†
k , V

†
k and W

†
k ,

only eight are nonzero, i.e.

G{kl}Un = +i
(
εmlnH

+
km + εmknH

+
lm

)
,

G
†
{kl}U

†
n = −i

(
εmlnH

−
mk + εmknH

−
ml

)
,

G{kl}W †
n = −i

(
δknH

+
0l + δlnH

+
0k

)
,

G
†
{kl}Vn = +i

(
δknH

−
l0 + δlnH

−
k0

)
,

(B.15)

and their h.c. versions.
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B.1.6. Sextet–singlet. Here all products are zero because sextet and singlet elements
correspond to different values of hypercharge.

B.2. Even–odd

B.2.1. Shift operators of U(1) ⊗ SU(3) and odd elements. The nonzero products of the
U(1) ⊗ SU(3) shift operators with the odd elements are

H +
klU

†
n = +

1

2
δknU

†
l − iεmnlG{mk},

H +
klVn = +

1

2
δklVn − δnlVk,

H +
klWn = −1

2
δklWn,

H +
klG0 = −1

2
δklG0,

H +
klG{mn} = − i

4
(δmlεnkr + δnlεmkr)U

†
r

− 1

2
(δmlG{nk} + δnlG{mk} − δklG{mn})

(B.16)

and

H−
kl Un = −1

2
δlnUk + iεmnkG

†
{ml},

H−
kl V

†
n = +

1

2
δklV

†
n ,

H−
kl W

†
n = −1

2
δklW

†
n + δknW

†
l ,

H−
kl G

†
0 = +

1

2
δklG

†
0,

H−
kl G

†
{mn} = +

i

4
(δmkεnlr + δnkεmlr )Ur

+
1

2

(
δmkG

†
{nl} + δnkG

†
{ml} − δklG

†
{mn}

)
.

(B.17)

B.2.2. Genuine generators of SU(4) and odd elements. The nonzero products of Hn0,H0n

and F±n with odd elements of Clifford algebra are

F−nVk = +iF+nVk = +iHn0Vk = δnkG0,

F−nV
†
k = +iF+nV

†
k = +iHn0V

†
k = − i

2
εnklUl + G

†
{nk},

F−nWk = −iF+nWk = −iH0nWk = − i

2
εnklU

†
l + G{nk},

F−nW
†
k = −iF+nW

†
k = −iH0nW

†
k = δnkG

†
0,

F−nUk = −iF+nUk = −iH0nUk = −iεnklV
†
l ,

F−nU
†
k = +iF+nU

†
k = +iHn0U

†
k = −iεnklWl,

F−nG0 = −iF+nG0 = −iH0nG0 = Vn,

F−nG
†
0 = +iF+nG

†
0 = +iHn0G

†
0 = W †

n,

F−nG{kl} = +iF+nG{kl} = +iHn0G{kl} = 1

2
δnkWl +

1

2
δnlWk,
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F−nG
†
{kl} = −iF+nG

†
{kl} = −iH0nG

†
{kl} = 1

2
δnkV

†
l +

1

2
δnlV

†
k . (B.18)

For completeness, we also specify how Uk, Vk and Wk transform under R02,±-induced
transformations:

R02,−VkR−1
02,− = δ2kW2 + 1

2ε2klU
†
l − i(1 − δ2k)G{2k},

R02,−WkR−1
02,− = δ2kV2 + 1

2ε2klU
†
l + i(1 − δ2k)G{2k},

R02,−UkR−1
02,− = δ2kU2 + ε2kl

(
V

†
l + W

†
l

) (B.19)

and

R02,+VkR−1
02,+ = δk2W2 +

i

2
ε2klU

†
l + (1 − δk2)G{2k},

R02,+WkR−1
02,+ = δk2V2 +

i

2
ε2klU

†
l − (1 − δk2)G{2k},

R02,+UkR−1
02,+ = δk2U2 + iε2kl

(
V

†
l + W

†
l

)
,

(B.20)

with analogous equations for the Hermitean conjugates.
Under R02,±-induced transformations, the off-diagonal (k �= l) elements G{kl} transform

as

R02,−G{12}R−1
02,− = +iR02,+G{12}R−1

02,+ = +
i

2
(W1 − V1),

R02,−G{13}R−1
02,− = R02,+G{13}R−1

02,+ = G{13},

R02,−G{23}R−1
02,− = +iR02,+G{23}R−1

02,+ = +
i

2
(W3 − V3).

(B.21)

The corresponding formulae for G{kk} are given in equation (76).
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[4] Żenczykowski P 2006 Concepts Phys. 3 263 (arXiv:quant-ph/0511231)
[5] Born M 1949 Rev. Mod. Phys. 21 463
[6] Harari H 1979 Phys. Lett. B 86 83

Shupe M A 1979 Phys. Lett. B 86 87
[7] Hestenes D 1966 Space-Time Algebra (New York: Gordon and Breach)

Hestenes D and Sobczyk G 1984 Clifford Algebra to Geometric Calculus ed D Reidel (Kluwer: Dordrecht)
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